EC2 spot pricing coming to Cluster Compute and Cluster GPU instances

AWS EC2 introduced the Cluster Compute and Cluster GPU instances few months back. Those instances are very good for high-throughput HPC applications, unfortunately, they have not been available in the spot market. I think that is about to change, the Cluster Compute and Cluster GPU instances should be available through the spot market shortly.

Over the weekend (Feb. 6, 2011), I have noticed that both cc1.4xlarge and cg1.4xlarge instances are showing up on AWS’s console when you query the price history. But that went away quickly the next day. I am guessing they were testing the features. Starting today (Feb. 8, 2011), you can query AWS API or use the AWS command line tool to see the price history for cc1.4xlarge instances. Furthermore, you can start bidding for cc1.4xlarge already (it was not possible over the weekend because the “current price” is not set for those instances).

Although there is no official announcement yet, I think it is just a matter of time. Have fun crunching through your HPC applications for cheap.



Comparing cloud providers on VM cost

How do you compare two IaaS clouds? Is Amazon EC2’s small standard instance (1 ECU, 1.7GB RAM, 160GB storage) cheaper or is Rackspace cloud’s 256MB server (4 cores, 256MB RAM, 10GB storage) cheaper? It is obviously simpler to compare them if you focus only on one metric. For example, let us assume your application is CPU bound and it does not require much memory at all. Then you should focus solely on the CPU power a cloud VM gives you. We have translated GoGrid, Rackspace, and Terremark‘s VM configurations into their equivalent ECU, so you can simply take a ratio between the cost and the ECU rating and pick the lowest ratio. Unfortunately, real-life applications are never that simple. They demand CPU cycle, memory, as well as hard disk storage capacity. So, how do you compare apple-to-apple?

The methodology

Since no methodology exists yet, we will propose one. Since the comparison results depend highly on the methodology chosen, we first will spell out the methodology we use so that if you have a different one and you come up with a different result, you can trace the source of the difference. If you see areas where we can improve the methodology, please do leave a comment. The methodology works as follows:

  1. We first break down the cost components in Amazon EC2. We assume Amazon has priced their instances using a linear model, i.e., the cost is equal to c * CPU + m * Mem + s * Storage, where c is the unit cost of CPU per ECU per hour, m is the unit cost of memory per GB per hour, and s is the unit cost of storage per GB per hour. Amazon provides several types of instances, each with a different combination of CPU, memory and storage, which is enough of a hint for us to use regression analysis to estimate c, m and s. The details are in our ECU cost breakdown analysis.
  2. Once we have the unit cost in EC2, we can compare it with another cloud provider. We take one VM configuration from a cloud provider at a time, we then compute what Amazon EC2 would charge for an instance with the exact same specification if EC2 were to offer it. This can be easily done by multiplying the EC2 unit costs (c, m, and s) with the amount of CPU, RAM, and storage in the VM, and add them up. Of course, this is hypothetical, because EC2 does not offer an instance with an exact same spec. So even if the EC2 price is lower, you cannot just buy a substitute from Amazon. However, this gives us a good sense of the relative cost.

We have done the analysis with GoGrid, Rackspace, and Terremark.

We can compute a ratio between a cloud VM’s cost with its hypothetical equivalent in EC2. The following lists the top few VMs that have the lowest ratio. If you are curious about the ratio for other VM configurations, feel free to dig into the individual posts on each provider. The ratio listed is assuming that you will get the maximum CPU allowed under bursting, which is frequently the case in those cloud providers. Further, the ratio listed is comparing with EC2 N. Virginia data center. Other EC2 data centers have a higher cost.

Provider RAM (GB) CPU (cores) storage (GB) cost ratio with an equivalent in EC2
Rackspace 0.25 4 10 0.168
Terremark 0.5 8 charged separately at $0.25/month/GB 0.19
Rackspace 0.5 4 20 0.314
Terremark 0.5 4 charged separately at $0.25/month/GB 0.338
Terremark 1 8 charged separately at $0.25/month/GB 0.375
Terremark 1.5 8 charged separately at $0.25/month/GB 0.491


How to use this data?

Due to the limitations of this methodology (comparing with a hypothetical equivalent in EC2), it only makes sense if one of the cloud provider you are comparing is Amazon EC2. In other words, do not compare Rackspace with Terremark based on the ratio.

It also makes no sense to use our results if you know the exact specification for your server. In that case, you should find a minimum VM configuration that is just barely bigger than your requirement and compare price.

Our results are useful if your application is flexible. For example, instead of using one m1.small instance in EC2, you could use several Rackspace 256MB VMs to achieve a dramatic cost savings. Examples of a flexible application include a batch application, such as a MapReduce job, which could be chopped down to a finer granularity. Another example could be web servers in a web server farm, where the load balancer can divide up the work to take advantage of whatever computation capacity provisioned on the web server.

Our results are also useful if you want to get a high level overview. Consider an enterprise purchaser who wants to choose a cloud platform. There are many dimensions he has to consider, e.g., features, cost, SLA, contract terms….. Doing a deep analysis at the beginning is just going to be overwhelming. Since Amazon is a big player in cloud, it most likely will be part of the evaluation. Having a ratio would give a ten-thousand-feet view such that the decision maker would know whether an alternative cloud would save him money. Then, as the evaluation progresses, he can dig deeper into a finer comparison.


There are many caveats in using our results that we should spell out.

  • This is only comparing a VM cost, including its CPU, memory and storage. But, it does not include other costs, such as bandwidth transfers. The bandwidth cost varies wildly, for example, GoGrid offers free inbound traffic, which can translate into a significant cost saving.
  • When we compare CPUs, we are only comparing their processing power, not their IO capabilities (both disk and network IO). In Amazon, we sometimes observe degraded IO performance, possibly due to competing VMs on the same host. It is a sad side effect of using popular cloud offerings.
  • As we mentioned, this only applies to fungible applications that can take full advantage of provisioned CPU, memory and storage resources. For example, if you cannot take advantage of the provisioned RAM, it does not matter if it is a good deal. You are wasting the memory, and you may be better off with a VM configuration from a different cloud provider with a smaller provisioned RAM.
  • This is not a substitute for feature comparisons. For example, GoGrid offers free F5 hardware load balancer. If you need a hardware load balancer, you should consider that separately.